Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3354, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637529

RESUMO

The discovery of Mn-Ca complex in photosystem II stimulates research of manganese-based catalysts for oxygen evolution reaction (OER). However, conventional chemical strategies face challenges in regulating the four electron-proton processes of OER. Herein, we investigate alpha-manganese dioxide (α-MnO2) with typical MnIV-O-MnIII-HxO motifs as a model for adjusting proton coupling. We reveal that pre-equilibrium proton-coupled redox transition provides an adjustable energy profile for OER, paving the way for in-situ enhancing proton coupling through a new "reagent"- external electric field. Based on the α-MnO2 single-nanowire device, gate voltage induces a 4-fold increase in OER current density at 1.7 V versus reversible hydrogen electrode. Moreover, the proof-of-principle external electric field-assisted flow cell for water splitting demonstrates a 34% increase in current density and a 44.7 mW/cm² increase in net output power. These findings indicate an in-depth understanding of the role of proton-incorporated redox transition and develop practical approach for high-efficiency electrocatalysis.

2.
Small ; 18(23): e2108124, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35434905

RESUMO

Solid-state electrolytes (SSEs) have been thrust into the limelight for the revival of energy-dense lithium metal batteries, but still face the challenge of failure caused by the dendrite penetration. Mounting evidence indicates that dendrite penetration is related to the mechanical failure in SSEs, which calls for mechanical engineering to tackle this problem. This work reports a proof of concept that ion implantation induced surface compressive stress enables resistance in the dendrite penetration. A deterministic sequential multiple ion energies implantation is used to generate compressive stress, with implanted Xe ions distributed in a range of 160-600 Å from the surface. The symmetric lithium cells show that pellets with an implantation dose of 1013 Xe cm-2 exhibit stable stripping/plating cycles and extended lifespan, while a lower dose of 1012 Xe cm-2 cannot create sufficient stress to prevent dendrite penetration, and an excessive dose of 1014 Xe cm-2 leads to structural destruction and a decrease in stress. This improved performance is attributed to the induced surface compressive stress balanced over crystal grains, which is confirmed by grazing incidence diffraction techniques. The author's efforts demonstrate the usefulness of surface compressive stress to suppress dendrite penetration, offering more insight into rational stress-strain engineering as opposed to empirical optimization.


Assuntos
Lítio , Xenônio , Dendritos , Eletrólitos , Íons
3.
Phys Chem Chem Phys ; 15(12): 4291-6, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23407721

RESUMO

The important problem of how to generate lateral order for ion implantation patterning of substrates is solved by using a nanoporous anodic alumina membrane as a mask. Co and Pt implantation is used at two implantation doses. In order to observe the achieved implantation zones free from artifacts, electron transparent thin nitride and oxide films are used as substrates, which allows the quality of pattern transfer from the mask to the thin film to be assessed by plan-view transmission electron microscopy. Characteristic density variations of implanted elements across projected pore-regions of the mask, such as ring and dome shapes, and corresponding variation of cluster size are discussed, and therefore the method also serves as a suitable test bed for ion beam focusing studies by cylindrical or conical pores.

4.
Nanotechnology ; 23(4): 045605, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22222442

RESUMO

Spatially patterned ion beam implantation of 190 keV Co(+) ions into a SiO(2) thin film on a Si substrate has been achieved by using nanoporous anodic aluminum oxide with a pore diameter of 125 nm as a mask. The successful synthesis of periodic embedded Co regions using pattern transfer is demonstrated for the first time using cross-sectional (scanning) transmission electron microscopy (TEM) in combination with analytical TEM. Implanted Co regions are found at the correct relative lateral periodicity given by the mask and at a depth of about 120 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...